Neutron stars and magnetars vs. gravitational waves

L. Stella,

INAF Osservatorio Astronomico di Roma - Italy

in collaboration with

S. Dall'Osso, R. Giacomazzo, G.L. Israel,

R. Perna, S. Shore, A. Vecchio

Gravitational Waves: space-time perturbations that propagate at c and transport energy and angular momentum

A mass that is:

- of order the solar mass
- extremely dense
- moving at a fraction of c
- subject to very large accelerations

Generation of GWs: Order of Magnitude

- Expand in multipole moments of source
- $h \sim 1/r$ [by energy conservation], and h dimensionless \Rightarrow

$$h_+ \sim h_\times \sim \frac{G}{c^2} \frac{\text{mass}}{r} \& + \frac{G \partial (\text{mass dipole})/\partial t}{r} \& + \underbrace{\frac{G}{c^4} \frac{\partial^2 (\text{mass quadrupole})/\partial t^2}{r}}_{\text{momentum; cannot oscillate}} \& \dots \\ \text{mass; cannot oscillate}$$

- ∂^2 (mass quadrupole)/ $\partial t^2 \sim$ mass x size²/ period² \sim (internal kinetic energy)

Strain:

$$h_{+} \sim h_{\times} \sim \frac{G \; E_{\rm kin}^{\rm quad}/c^{2}}{r} \sim 10^{-21} \left(\frac{E_{\rm kin}^{\rm quad}}{M_{\odot}c^{2}}\right) \left(\frac{100 \rm Mpc}{r}\right)$$
 (Thorne)

Quadrupole formula: $-dE/dt = (G/45c^5) D^2$

(note: constant is ~ 10⁻⁴⁵ in CGS units!)

Coalescence: final stages of relativistic binaries

Orbital distance decreases

$$R(t) = R_{in} \left(1 - t/t_{coal}\right)^{1/4}$$

$$t_{coal}=rac{5}{256}rac{R_{in}^4}{\mu M^2}$$

$$M = M_1 + M_2$$

$$\mu = M_1 M_2 / M$$

Orbital frequency increases

$$v_{GW} = 2 v_{orb}$$

$$u = rac{1}{\pi} \left[rac{5}{256} rac{1}{\mu M^{2/3}} rac{1}{(t_{coal} - t)}
ight]^{3/8}$$

CHIRP

Ferrari

the wave amplitude increases with time

GWs from non-axially symmetric, fast spinning neutron stars

- "Mountains" (Crab [33ms] and Vela pulsars [91ms], also accreting ms pulsars in LMXB [few ms])

- Dynamical instabilities (e.g. R-modes)

 Ultra strong internal magnetic fields (B > 10¹⁵ G; Magnetars)

Magnetar Bursts

- Concentrated in time ("outbursts")
- Broad distribution of wait times (~7 decades) and energy: similar to that of earthquakes; no waiting-time correlations
- Most bursts release ~10³⁸-10⁴¹ ergs

Fig. 14.1. A selection of common burst morphologies recorded from SGR 1806–20, SGR 1900+14 and 1E 2259+586, as observed with the RXTE PCA. All light curves display counts in the energy range 2–20 keV, with a time resolution of 7.8 ms. See text for further details.

Magnetar Giant Flares

- 1979 March 5 from SGR 0526-66: energy released $\sim 10^{44}$ ergs 1998 August 27 from SGR1900+14: energy released $\sim 10^{44}$ ergs

Two classes of galactic high energy sources contain magnetars (~20 objects so far)

		<u>Soft Gamma Repeaters</u> SGRs (1987)	Anomalous X-ray Pulsars AXPs (1995)
•	Spin Period	5-10 s	2-12 s
•	Period Derivative	~10 ⁻¹¹ s/s	~10 ⁻¹¹ -5×10 ⁻¹³ s/s
•	Recurrent Bursts	~10 ³⁸ -10 ⁴¹ erg/s	$\sim 10^{37} - 10^{38} \text{ erg/s}$
•	Giant Flares	yes	no ?
•	Persistent emission	~10 ³⁵ erg/s	$\sim 10^{34} - 10^{35} \text{ erg/s}$
•	Transient behaviour	yes	yes
•	Association to SNRs	?	in some cases
	Radio pulsations	?	in some cases

Magnetars: neutron stars powered by magnetic energy

"Magnetars" (MAGNEtic sTARS): neutron stars with very high magnetic fields (B>10¹⁴G)
 Why powered by magnetic energy?

Persistent luminosity 10-100 times higher than spin down power

-> rotational energy ruled out

Recurrent flares reach 10^{41} erg/s ~ 1000 L_{Edd} , giant flares 10^{44} erg/s ~ 10^6 L_{Edd}

-> accretion energy ruled out

Interest in Magnetars

- * Original idea predates the discovery of neutron stars (Woltjer 1964)
- * Modern theory developed in late ninties (Thompson & Duncan 96 ->)
- * In the last ~ 10 years a lot of the interest in magnetars
 - different channels have been described to form magnetars.
 - magnetars to interpret:
 - Fast Radio Bursts,
 - Some SuperLuminous SuperNovae
 - Ultrahigh energy neutrinos
 - Central engine of both long and short GRBs,
 - Gravitational wave sources detectable by Advanced LIGO/Virgo

The B-field of Magnetars

Very strong internal B-fields in a newborn differentially rotating fast-spinning neutron star

For initial spin periods of P_i ~1-2 ms, differential rotation can store ~ $10^{52}(Pi/1 \text{ ms})^2$ ergs, that can be converted into a magnetic field of up to $3\times10^{17} (P_i/1\text{ms})^{-1} G$. (efficient dynamo might be limited to ~ $3\times10^{16} G$) (Duncan & Thompson 1)

 $B_d \sim 10^{14-15}\,G$ outer dipole field (spin-down, pulsations) inferred from spin-down rate (and confirmed through the energetics and fast variability properties of the "ringing tail" of Giant Flares from SGRs)

 $B_t > 10^{15} G$ inner toroidal field (energy reservoir): lower limit from: L(persistent) x age ~ 10^{47} ergs

Shape of a highy magnetic star

Star with a constant inner B-field cannot be spherical

(Chandrasekhar & Fermi 1953)

Poloidal inner B-field: Oblate star

Toroidal Innar B-field : Prolate star

Magnetically induced distortion and gravitational wave emission

- An old idea, considered mainly in relation to young radio pulsars such as the Crab

(e.g. review by Cutler & Thorne 2002)

- Renewed interest in highly magnetic ($\sim 10^{14}$ - 10^{15} G) newly-formed neutron star in our Galaxy. Problem: expected recurrence times are long (> 100 yr at the best)

(e.g. review by Bonazzola & Marck 1994)

- Detailed studies of gravitational wave emission properties (Gourgoulhon & Bonazzola 1996, Konno 2001, and early evolution (Cutler 2002)

Palomba 2001)

SGR 1806-20: Giant Flare of 2004 Dec 27

(Palmer et al. 2005) Hurley et al. 2005)

Moon reverberation seen!

Giant Flare Source Assumed distance	March 5, 1979 SGR 0526-66 55 kpc	August 27, 1998 SGR 1900+14 10 kpc	December 27, 2004 SGR 1806-20 15 kpc
Initial Spike			
Duration (s)	~ 0.25	~ 0.35	~0.5
Peak luminosity (erg s ⁻¹)	3.6 10 ⁴⁴	>3.7 1044	$(2\div 5)\ 10^{47}$
Fluence (erg cm ⁻²)	$4.5 \ 10^{-4}$	$>5.5 \cdot 10^{-3}$	0.6÷2
Isotropic Energy (erg)	1.6 10 ⁴⁴	>6.8 10 ⁴³	$(1.6 \div 5) \ 10^{46}$
Pulsating tail			
	200	100	222
Duration (s)	~ 200	~400	~380
Fluence (erg cm ⁻²)	$1 \ 10^{-3}$	$4.2 \ 10^{-3}$	5 10 ⁻³
Isotropic Energy (erg)	3.6 1044	$5.2 \ 10^{43}$	1.3 1044
Spectrum	$kT\sim30~keV$	$kT\sim20~keV$	$kT\sim15-30~keV$
Pulse Period (s)	8.1	5.15	7.56

The 2004 Dec 27 Event and the Internal B-field of Magnetars

- Energy of $\sim 5 \times 10^{46}$ ergs released in initial 0.6 s long spike (Terasawa et al. 2005; Hurley et al. 2005)

- 1 such event in ~30 yr of monitoring of 5 SGRs
 - -> Recurrence time ~ 150 yr/magnetar
- \sim 70 events like the 2004 Dec 27 event expected in \sim 10⁴ yr (SGR lifetime)
 - -> Total energy release (independent of beaming) ~4x10⁴⁸ ergs

If internal field is the energy source, then B > 1015.7 G

Including total neutrino energy release: B > 1015.9 G

New limit on B_t

GWS FROM NEWLY BORN MAGNETARS

PROLATE DISTORTION

 $\chi \neq 0$ Excites free body precession

$$\omega = \epsilon_B \Omega \cos \chi$$

Mestel & Takhar (1972)

$$\epsilon_{B} \sim 10^{-3} B_{16}^{2}$$

cf. Cutler (2002)

Free precession in 4U 0142+61 B~10^16 G

Makishima et al. 2014

$$E_{spin} \sim 0.015~P^{\text{-}2}{}_{ms}~M_{\!\!\scriptscriptstyle O}\,c^2$$

External (dipole) B $\sim 10^{14}$ - 10^{15} G

Internal (toroidal) B $\sim 10^{16}$ G

Magnetic dipole emission GW emission

GWS FROM NEWLY BORN MAGNETARS

BULK VISCOSITY:

depends on chemical composition and EoS (Prakash 1998, Haensel et al. 2001, Dall'Osso et al. 2017)

GWS FROM NEWLY BORN MAGNETARS

Signal to Noise ratio with Advanced LIGO/Virgo

(for Virgo Cluster distance, 20 Mpc)

Most promising region is $B_{t} \sim 10^{16} G$ and $B_{d} \sim 10^{14} G$

Expected magnetar birth rate at Virgo distances: ~ 1 yr-1!

Potentially Interesting GW Event Rate in Advanced LIGO/Virgo

Association with Supernovae -> e.m. counterpart of GW event

Merging neutron star binaries: GW sources + central engines of short GRBs (?)

Massive Neutron Stars

- A few neutron stars discovered with mass ~ 2Mo:
 - -> equation of state must be stiff enough to sustain them!

(Demorest et al. 2010; Antoniadis et al. 2013)

- Merging neutron stars may lead to the formation of a massive, very fast spinning NS, rather than a BH (Giacomazzo & Perna 2013)

Post-Merging Neutron Stars:

- Stable: M<M(max)
- Supramassive: stabilised by rotation
- Hypermassive: stabilised by differential rotation

Differential rotation amplifies the B field to magnetar values with very strong toroidal component

(Zrake & MacFadyen 2013, Giacomazzo + 2014)

Neutron star binary systems with known masses:

how many would give rise to a post merging neutron star?

- Fraction depends on EoS, but it might be high (~30%)
- Similar value obtained from mass distribution of all NSs

GW signal:

 merging binary NS signal followed by a weaker weeklong signal from fast spinning massive magnetar

The latter can be detectable in ~1% of the cases (range of ~ 35 Mpc).

Detection would provide crucial info on:

- . EoS
- Short GRB engine

Summary

- We have astrophysical evidence that magnetars have internal, mainly toroidal magnetic fields $\sim 10^{16}$ Gauss.
- Magnetars are born fast-spinning and can be very powerful GWs sources for days-weeks
 - * The magnetar birth rate in core-collapse SN is ~ 1/yr at Virgo cluster distances:

 detectable GW signal by Advanced Virgo/LIGO for a range of parameters plus association to a SN!
 - * When formed in merging binaries:

 (massive) magnetars would be detectable by Advanced Virgo/LIGO

 up to R ~35 Mpc.
 - Rates ~1% of merging NS rate.