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Gravitational Waves: space-time perturbations that propagate at ¢ and
transport energy and angular momentum

What is needed for a GW signal fo be detectable ?

A mass that is:

- of order the solar mass

- extremely dense
- moving at a fraction of ¢

- subject to very large accelerations




Generation of GWs: Order of Magnitude

e Expand in multipole moments of source
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Coalescence: final stages of relativistic binaries

Orbital distance decreases Orbital frequency increases

R(t) = Rin (1 - t/tcoal)l/dl
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the wave amplitude increases with time




GWSs from non-axially symmetric, fast spinning neutron stars

- "Mountains” (Crab [33ms] and Vela pulsars [91ms],
also accreting ms pulsars in LMXB [few ms])

- Dynamical instabilities (e.g. R-modes)

- Ultra strong internal magnetic fields
( B > 10" G; Magnetars)




Magnetar Bursts

Concentrated in time (“outbursts”)

Broad distribution of wait times (~7 decades) and energy: similar to that
of earthquakes; no waiting-time correlations

Most bursts release ~1038-10# ergs
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Magnetar Giant Flares

- 1979 March 5 from SGR 0526-66: energy released ~10%* ergs
- 1998 August 27 from SGR1900+14: energy released ~10%* ergs

SGR 1900+14
Aug. 27, 1998
Ulysses, 25-150 keV
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Two classes of galactic high energy sources contain magnetars
(~20 objects so far)

Soft Gamma Repeaters Anomalous X-ray Pulsars
SGRs (1987) AXPs (1995)

Spin Period 5-10 s 2-12 s

Period Derivative ~10-11 s/s ~10-11-5x1013 s/s
Recurrent Bursts ~1038-10* erg/s ~1037-1038 erg/s
Giant Flares yes no ?
Persistent emission ~103% erg/s ~1034-103° erg/s
Transient behaviour yes yes
Association to SNRs ? in some cases

Radio pulsations : in some cases




Magnetars: neutron stars powered by magnetic energy

"Magnetars” (MAGNEtic sTARS): neutron stars with very high magnetic fields (B>1014G)
Why powered by magnetic energy ?

Persistent luminosity 10-100 times higher than spin down power
-> rotational energy ruled out

Recurrent flares reach 10# erg/s ~ 1000 Lgyy , giant flares 10%* erg/s ~ 106 Lgyq
-> accretion energy ruled out

2 Making a magnetar

Hot, newborn star
churns and mixes

Internal convection
carries off heat

Fast spin (few ms) and
differential rotation generate
internal toroidal field B > 10'5 G




Interest in Magnetars

* Original idea predates the discovery of neutron stars

* Modern theory developed in late ninties

* In the last ~ 10 years a lot of the interest in magnetars
- different channels have been described to form magnetars.

- magnetars to interpret:
- Fast Radio Bursts,
- Some SuperlLuminous SuperNovae
- Ultrahigh energy neutrinos
- Central engine of both long and short GRBs,

- Gravitational wave sources detectable by Advanced LIGO/Virgo




The B-field of Magnetars

Very strong internal B-fields in a newborn differentially rotating fast-spinning neutron star

For initial spin periods of P~1-2 ms, differential rotation can store ~10%2(Pi/1 ms)? ergs,
that can be converted into a magnetic field of up to 3x10 (P,/1ms)! G.
(efficient dynamo might be limited to ~3x10% &)

Making a magnetar

Hot, newborn star
churns and mixes

A
Internal convection \%
1.

carries off heat

Fast spin (few ms) and
differential rotation generate
internal toroidal field B > 1015 G

B,>1056G inner toroidal field (energy reservoir):
lower limit from: L(persistent) x age ~ 10*7 ergs




Shape of a highy magnetic star

Star with a constant inner B-field cannot be spherical

Poloidal inner B-field : Oblate star

Toroidal Innar B-field : Prolate star




Magnetically induced distortion and gravitational wave emission

- An old idea, considered mainly in relation to young radio pulsars such as the Crab

- Renewed interest in highly magnetic (~10!4-10%> G) newly-formed neutron star in our Galaxy.
Problem: expected recurrence times are long (> 100 yr at the best)

- Detailed studies of gravitational wave emission properties
and early evolution




SGR 1806-20: Giant Flare of 2004 Dec 27
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Giant Flare March 5, 1979 | August 27, 1998 | December 27, 2004
Source SGR 0526-66 SGR 1900414 SGR 1806-20
Assumed distance 55 kpe 10 kpe 15 kpe

Counts/s

Initial Spike p—
Duration (s) ~0.25 ~0.35 ~A.5
e Peak luminceity {ergﬁs‘l ) 3.6 104 =37 10 ) (2-5) 1047
Time (s) Fluence (erg cm™=) 4.5 104 >5.5 1C 0.6-2

lsotropic Energy (erg) 1.6 104 =68 10% (1.6+5) 1046

Pulsating tail
Duration (s) ~ X0 ~380)
Fluence (erg cm=2) 110-° 1.2 103 5102
Isotropic Energy (erg) 3.6 104 5.2 1083 1.3 104

Spectrum kT~30 keV kT~20 keV kT~15-30 keV

Pulse Period (s) 8.1 5.15 7.56




The 2004 Dec 27 Event and the Internal B-field of Magnetars

Energy of ~ 5x 10% ergs released in initial 0.6 s long spike

INTEGRAL SPIACS Lightcurve
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1 such event in ~30 yr of monitoring of 5 SGRs Time [s] after21:30:26 539 UTC
-> Recurrence time ~ 150 yr/magnetar

~70 events like the 2004 Dec 27 event expected in ~10% yr (SGR lifetime)
-> Total energy release (independent of beaming) ~4x1048 ergs

If internal field is the energy source, then B> 10>7 G

Including total neutrino energy release: B> 109 G

New limit on B,




GWS FROM NEWLY BORN MAGNETARS
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GW emission
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BULK VISCOSITY:

depends on chemical composition and EoS
(Prakash 1998, Haensel et al. 2001, Dall’Osso et al. 2017)




GWS FROM NEWLY BORN MAGNETARS
Amplitude (h)
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Signal to Noise ratio with Advanced LIGO/Virgo

(for Virgo Cluster distance, 20 Mpc)

Most promising region is
B,~ 10 G and B ~ 10 G

- Expected magnetar birth rate at Virgo distances: ~ 1 yr-!|

Potentially Interesting GW Event Rate in Advanced LIGO/Virgo

Association with Supernovae -> e.m. counterpart of GW event




Merging neutron star binaries:
GW sources + central engines of short GRBs (?)




Massive Neutron Stars

- A few neutron stars discovered with mass ~ 2Mo:
-> equation of state must be stiff enough to sustain them !

- Merging neutron stars may lead to the formation of a massive, very fast
spinning NS, rather than a BH

Post-Merging Neutron Stars:

- Stable: M«M(max)

- Supramassive: stabilised by rotation

- Hypermassive: stabilised by
differential rotation

Differential rotation amplifies the B
field Yo magnetar values with very strong
toroidal component




Neutron star binary systems with known masses:

how many would give rise to a post merging neutron star ?

ces My may = 243 M

Fraction depends on EoS, but
it might be high (~30%)

Similar value obtained from
mass distribution of all NSs

GW signal:

- merging binary NS signal
followed by a weaker week-
long signal from fast spinning
massive magnetar

The latter can be detectable in
~1% of the cases

(range of ~ 35 Mpc).

Detection would provide crucial
info on:

- EoS
- Short GRB engine




Summary

- We have astrophysical evidence that magnetars have internal, mainly toroidal
magnetic fields ~ 10!¢ Gauss.

- Magnetars are born fast-spinning and can be very powerful GWs sources for
days-weeks

* The magnetar birth rate in core-collapse SN is ~ 1/yr at
Virgo cluster distances:
detectable GW signal by Advanced Virgo/LIGO for a range of
parameters plus association fo a SN |

* When formed in merging binaries:
(massive) magnetars would be detectable by Advanced Virgo/LIGO
up to R ~35 Mpc.
Rates ~1% of merging NS rate.




