Super-Bright Thermonuclear SNe

Peter Hoeflich (FSU)

Subclass of SNe Ia, often called "Super-Chandra":

- 1st object discovered: SNLS-03D3bb/SN2007if (Howell 2007, Nature 443, 308)
- Since then, a handful more: Rotse J011051+152740, SN2009dc, SN2011aa, SN2012dn, SN2013dy, SN2017cbv → very rare Characteristics (or Character Flaws) compared to SNe Ia:
- Nuclear signature: alpha elements → thermonuclear
- 1 to 1.5^m brighter corresponding to 1.5 Mo M(56Ni) (Arnett's law)
- slow decline rates
- Strong carbon lines
- slow expansion rates (3-5,000 km/sec)
- Layered structure with lot's of Carbon, little Si/S and lot's of Ni
- late time spectra are not dominated by f orbidden lines
- very low continuum polarization for two (Maeda, Patat, ...) -> round?

Common Models:

- Merging of massive WDs to form a "super-M(Ch)"
- alternative models?

Some Questions

- Do we really need 1.5 Mo of 56Ni?
- Are superbright SNe Ia a different class?
- Are all 'superbright' SNe Ia really superbright?
- Are all 'superbright' SNe Ia super-M(Ch)?
- Have all 'superbright' SNe Ia more than 1.4 Mo?
- Do we suggest a different scenario, and where does it differ?
- Why are 'superbright' SNe Ia superbright?

Some Questions (with short answers):

- Do we really need 1.5 Mo of 56Ni?

- Are superbright SNe Ia a different class? Yes

- Are all 'superbright' SNe Ia really superbright? No

- Are all 'superbright' SNe Ia super-M(Ch)? No but ...

- Have all 'superbright' SNe Ia more than 1.4 Mo? Yein

- Do we suggest a different scenario, and where does it differ? Yein

- Why are 'superbright' SNe Ia superbright? Let's see ...

Some Questions

- Do we really need 1.5 Mo of 56Ni?
- Are superbright SNe Ia a different class?
- Are all 'superbright' SNe Ia really superbright?
- Are all 'superbright' SNe Ia super-M(Ch)?
- Have all 'superbright' SNe Ia more than 1.4 Mo?
- Do we suggest a different scenario, and where does it differ?

Outline

- Common ground: Basic Physics of Thermonuclear SNe
- Alternative Explosion Scenario
 (by inverting the problem & mixing all crazy ideas and shake well)
- Light curve simulations
- Spectral properties and tests
- Open questions

Thumbnail Sketch of Thermonuclear Supernovae

SNe Ia are thermonuclear explosions of White Dwarfs (C/O core of a star with less than 8 M_{\odot})

SNe Ia are homogeneous because **nuclear physics** determines the WD structure & explosion The total energy production is given by the total amount of burning

The light curves are determined by the amount of radioactive ⁵⁶Ni

Classes of Progenitor Systems

Accreting WD (MS, RG, He-star, C-star) (SD-systems)
(e.g.Nomoto et al. 1984, Wang &Han, 2013), see presentation of Han & Toonen)
Two merging WDs (DD-systems)

Common Causes Diversity:

- Main Sequence mass $M(MS) \rightarrow Explosion energy E(nuc)$
- Mass of progenitor → central density
- Metallicity Z \rightarrow E(nuc) and 56Ni
- Magnetic fields → Hydro & Spectra
- Environment → Interaction, 'ISM'

Classes for Explosions

M(Ch) mass WDs: Ignition by compressional heat (originates from either SD or DD, CD) Heat release during dynamic process (dynamical mergers, violent mergers, He-detonations)

The Zoo of Explosion Scenarios

Delayed Detonation: Khokhlov et al. 1989, Niemeyer et al.1995, Hoeflich & Khokhlov 1996, Gamezo et al. 2003,

Roepke et al. 2006, ...; PDD & shell models, HK 95, 96, ...

Mergers: Benz et al. 1990, ... Garcia-Sanzec et al. 2015,...

Double-Detonations: Nomoto et al. 1984, Woosley et al, 86, HK96, Livne et al. 1998 ..., Kromer 2014, ff.CDs Yoon 2006,

II) Light Curves in a Nutshell

Energy Input: Radioactive Decay ⁵⁶Ni → ⁵⁶Co → ⁵⁶ Fe

Products: X- and Gamma-ray photos + positrons

Optical Luminosity:

Deposition of hard photos/positrons + diffusion of low energy photons+geometrical dilution by expansion

The Role of the Opacity by Lines

Dependencies:

Fe

T, ρ , abundances and dv/dr = 1/s (Flux \rightarrow Rosseland opacities)

(Hoeflich, Khokhlov, Mueller 1993)

Light Curves In a Nutshell (Luminosity from X- to FIR)

Energy Input: Radioactive Decay ⁵⁶Ni → ⁵⁶Co → ⁵⁶ Fe

Products: X- and Gamma-ray photos + positrons

Optical Luminosity:

Deposition of hard photos/positrons + diffusion of

low energy photons+geometrical dilution by expantion

43.5 dE(gamma)/dt 5p0z22.25 (Q=1.1) 43 5p0z22.16 (Q=1.3) log(L[erg/sec]) 5p0z22.12 (Q=1.5) 42.5 42 30 10 40 t [days]

The Role of the Opacity by Lines

Dependencies:

T, ρ , abundances and dv/dr = 1/s

(Hoeflich, Khokhlov, Mueller 1993)

Numerical Environment of *HYD*_{rodynamical} *RA*_{diation} transport

Opacities

Rem.: Not all modules can be combined simultaneously (Perturbation strategies and CPU-time: e.g. 3D-struc.+NLTE)

Comparison with Observations (CSP I, Burns et al. 2014)

The brightness decline relation and colors (Hoeflich et al. 1996, Maeda et al. 2001, Kasen et al. 2009) Ref. M(WD)=M(Ch), rho(c)=2E9g/ccm Z=solar, M(MS)=5Mo (WD structures from Dominguez et al. 2002)

Superbright SNe may follow dm15 but, then, Q should be small!

Mixing suppressed: B-field (H.et al. 04, Penney & H., 12, Fesen et al. 07/15, Remming et al. 2014, Hiskov et al.

Diversity of SNe Ia: Burn's CDR and Wang's CMagic

Super-M(Ch) are not following \rightarrow separate class

IR-Analysis of SN1999by (as followed from explosion without tuning)

The Transition form Fe III to Fe II in a normal bright SNe Ia

A NLTE model vs . SN1994D (H95)

Fe/Co/Ni III & Si/SII dominate

Fe/CoII & Si/SII dominate

Fe/Co II dominate (some emission components Starts to get stronger)

The Trouble with Thermonuclear Models with respect to Super_M(Ch)

Scenario	Initial mass	Defl.	Det.	M_{56Ni}	Αρ	$A(X_i)$	C & O	stable Ni
Det.	≈ 1.37	_	X	0.83-0.9	<<	no	no	X
Defl.	≈ 1.37	X		$0.05: \dots 0.6$	<<	small scale	< 0.1	X
DDT	≈ 1.37	X	X	0.05-0.8	<< (axial)	some	$\approx 10^{-42}$ *	X
PDDT	≈ 1.37	X	X	0.1-0.8	<<	some	typical ≈ 0.3 **(s)	X
HeD	0.6 - 1.2	-	X	01.07	<	some	no	no
Mergers	0.6 - 2.7	no	X	01.7:	large(:)	X	x (s)	no

^{*} for normal bright SNe Ia but increasing to $0.3M_{\odot}$ for subluminous SNe Ia models. ** small amplitude pulsations can produce C & O down to DDT models

Problems with 'bright' M(Ch) and below

- too little 56Ni?
- no layered structure for Defl.
- too little C/O for all but PDD
- too fast expansion velocities

Problems with 'Mergers'

- Polarization?
- Directional dependence of L?
- too fast

Energetics: How to bring the velocity down?

Envelope models: Sub-M(Ch) WD of 1.2 Mo surrounded by envelope

- Shell-like envelope with unburned C/O outside (v> 10,000- 12,000 km/sec)
- thin layers of S/Si, Mg and Ne
- about 0.5 to 0.6 Mo of 56Ni

Numerical corrolar: Challenges are gradients

Delta v (0.3-0.6M(r))= 500 km/sec, delta rho(0.6) > 10 \rightarrow 1000+ depth point in RT

How do LC s look like?

Spectral & LC properties:

- up to about -19.7 mag
- as brighter as redder
- B-V up to 0.2 mag
- as brighter as redder
- as brighter as more C
- as brigther as lower v

Problem (celing):

All Superbrights are reddened

Quimby et al. 2006

Similar model based on Core-Degenerate Explosions

1) Suggested by Yoon (2008) based on stellar evolution:

AGB star: with an accreting, degenerate core WD: core-degenerate scenario in Common Envelope Scenario

Problem: evolutionary time longer than Age of the Universe for low core masses and longer than stellar evolution of He-shell burning by for more massive stars.

2) Kashi & Soker (2009), Rashkin et al. (2010)

High magnetic fields may increase the accretion rate significantly (hand-waving): Rotation will stabilize the WD and angular losses will, eventually, produce the deflagration of the degenerate core.

Soker et al. (2014) suggested to have shown from a statistical analysis that this will work for all normal and subluminous supernovae (80 % CDs, 20% dynamical mergers).

Problems: Low accretion → Deflagration High accretion will either go like a Double Degenerate Scenario, - no high velocity Si/S, ...

3) May result in super-bright SNeIa (Hoeflich 2016, in HB of Supernovae, Springer)
Problem for super-bright SNe Ia: Deflagration is too dim because of Ni production
Suggestion: Core-degenerate Scenario (CD) → Detonating Core Degenerates (DCD)

Bright: Increase mass of 56Ni

Classical Detonation Model

Strong points:

Up to 0.85 Mo of 56Ni

M(V) = -19.8 mag

B-V = -0.10 mag

Problems: Electron capture limits 56Ni production

Velocity gradients by compression produces deflagration (Zeldovic et 1976, Shigimoto & Nomoto 1978, Blinnikov & Khokhlov 1979, ...)

Back to

Stellar evolution (Kippenhahn 1978, Yoor

Super-M(Ch) should be rare Balance between energy loss, progenitor mass etc.

Needed: Much slower accretion (but faster than Yoon 2009)

- => Isothermal core
- => Detonation but at lower density

Tests with MESA: 6-7Mo which gains 0.4 Mo CO mass during AGB on time-scales of 100-1000yrs 'Sufficient' small T-gradients/close to isothermal to detonate (Niemeyer et al. 1995)

Suggested Scenario for Super-M(Ch):

Hybrid of classical detonations, envelope model, and CDs Detonations in an AGB star which gained high mass CO-core

- Shell-like envelope with unburned C/O outside (v> 3000...6000 km/sec)
- up to about 1.1 Mo of 56Ni
- thin layers of S/Si, Mg and Ne (Extreme case: 2x1.25 rotating CO-core with 0.5 He-mantel)

How do LC s look like in V,B and

DVD with 1.4+1.55 M_o , Z=0.1 Z_o DET2ENV2 with 1.2+0.4 M_o , Z= Z_o 5p0z22.25 DD, ρ_t =2.5E7, Z= Z_o 5p0z22.16 DD, ρ_t =1.6E7, Z= Z_o

log(L[erg/sec])

log(L[erg/sec])

Spectral & LC properties:

- up to about -20.5 mag
- B-V up to 0.01 to 0.2 mag
- correlation between v & M(env)
- Higher accretion means dimmer (down to normal SNeIa, ENV-models, HK96)

Problem (free parameters):
How low can we go in AGB mass
& brightness

Favorable properties to produce a bright thermonuclear Supernovae or what makes the bright?

- Low expansion velocity of radioactive 56Ni from more 56Ni (currently 0.6 ... 1.1 Mo)
- a) Small escape probability for regular SNe Ia → gain of 1+ mag for same 56Ni mass

b) What let the large CO mass disappear?

High density and low temperature — early CO formation and low-opacity (C+O->CO)

envelope. (Model with 2.9 Mo at time=22 days) re maximum).

Molecule prevent re-heating

$$C + O \rightarrow CO$$

 $C + O^{+} \rightarrow CO^{+} + Me \rightarrow CO + Me^{+}$
 $C^{+} + O \rightarrow CO^{+} + Me \rightarrow CO + Me^{+}$

Rem: CO may trigger dust formation (eventually)

CO as diagnostical tools (and SiO Emission at late times) (Hetal 1995ff)

Rem: Formation depends on ionization level via charged ions

Remarks on Spectra:

- SN1991bg-like spectra at an earlier time → spectra measure energy density at photosphere

Not surprising because spectra are insensitive to radii.

- UV brightness depends on either low Z or flat density structure.
- MIR: CO-fundamental band already early on
- As brighter as lower the velocity of IME
- NIR Fe-island starts to appear only approx 1.5-2 months after maximum

(SN 1991by at about 2-3 weeks after max, normal SNeIa some 1 week after max, H. et al. 2002). Not surprising either because the low velocity of Fe-groups.

- Low expansion → high density and hardly any forbidden lines for months

Was SN1991T a 'dimm' DCD?

(H.et al. 1993, AA)

- Si/S in narrow range → shell
- Si/S at high velocity 11,000km/sec → 0.2 Mo
- Distance 12.5 vs. 13.5 (Saha et al. 1989)
- Narrow late-time spectra (Bowers មា្រៀង ខ្មែង lenter

Figure 12. NIR spectrum (solid line) of SN 1991T at $+338 \,\mathrm{d}$, obtained at the United Kingdom Infrared Telescope with the cooled grating spectrometer CGS4 (see Table 2 for details). Other details as described in Fig. 5 caption.

Finite & Future

- UV & colors will depend sensitively on the initial metallicity
- Si/S velocity will depend sensitively on the envelope masses
- Spectra measure the physical condition in the decoupling region (not wavelength independent)
- LC measure the transport time scales → need CO cooling
- Do we see broad He in some cases and at late times?
- Do we see evidence for shells of an AGB-superwind?
- What do we see ? (or models are models)
- Was SN1991t a 'dimm' DCD without CO formation?

• • •

- WHAT DOES NATURE REALIZE?

ADDED: He-trigger for sub-M(Ch)

Note: the minimum density in a He-detonation is larger than 5E5 g/cm3 (Livne 1995, ApJ 452, 84). For example, this corresponds to a minimum of 0.035 Mo of He needed for a self-driven detonation.

For triggering a CO-detonation and due to instabilities, the actual mass must be expected to be significanty la rger. (Answer to a suggestion by W.Hillebrandt during this talk that 1E-2 Mo of He are sufficient for an 0.9 Mo and this amount and this amount does not dependent on M(WD)).

		56Ni(shell) Iron-group elements(shell) ApJ, accretion 2E-8Mo/yr)
0.6 + 0.22	0.43	0.12
0.6 + 0.14	nova	
0.8 + 0.16	0.526	0.05
1.0 + 0.15	1.07	0.02
Woosley & Weaver	1994 (A	pJ 423, 371, accretion 1E-8)
0.6 + 0.20	0.23	0.12
0.6 + 0.16	nova	
0.8 + 0.17	0.56	0.07
0.9 + 0.18	0.79	~0.06
0.9 + 0.24	0.98	0.09
Nomoto 1982 (ApJ	253, 798	out o)
1.08 + 0.078	na	
Livne & Arnett 1995	6 (ApJ 45)	2, 62L, 2D, 8 models, schematic models)
0.60 + 0.10	"nova"	(no front under 5E5 g/cm³)
0.60 + 0.20	0.14	~0.10
0.80 + 0.20	0.648	~0.08
1.1 + 0.20	0.71	na
Kromer et al. 2010	(dynamic	cal accretion, non-merging mergers)
0.810 + 0.126	0.17	0.008 0.011(Cr)/~0.04 (iron-group)
1.025 + 0.084	0.24	0.0011 ~0.05 (iron-group)
1.280 + 0.013	1.05	0.0015 ~0.06 `"